	PreCalc Math 11	
	5.6 Applications of Quadratic Functions	
Set up a	problem to find out	its As you know,
	point, which is always of interest in w	
	rhose product is a minimum, and they diff	fer by 10.
STEP 1: State your		
STEP 2: Write an	for the thing you're trying to	or
	only have variables. This mean	
	terms of the other and then	
one variable in		
STEP 3:	Then answer the or	iginal question.
	ngular area of 100 m of fencing if there ar	
a) 4 sides of enclosed fencing	b) 3 sides of fencing,	
	X	A = xy
	2x+y=100	$= \times (100-2x)$
	y=(00-2x	$= -2x^2 + 100x$ $\left(-\frac{50}{2}\right)^2 = 62$
	/	$= -2(x^2 - 50x)$ $= -2(x^2 - 50x + 625 - 625)$
		$= -2(x^2-50x+625)-2(-625)$
	625	$A = -2(x-25)^{2} + 1250$
		V (25,1250)
	X=2	7 1
		An ax
		10.2(21-) LENGTH IS SUM
	IA =	50m Width is 25m.

Date: _____

Name: ______ Blk: ____

Example 3: What price gives maximum revenue? Mannesha sells math cheat sheets for \$20. There are 300 students willing to buy at this price. For every \$5 increase in price, 30 fewer students will buy. What price gives the maximum profit?

$$P = (20+5x)(300-30x)$$

$$= 6000 - 600x + 1500x - 150x^{2}$$

$$= -150x^{2} + 900x + 6000$$

$$= -150(x^{2} - 6x + 9 - 9) + 6000$$

$$= -150(x - 3)^{2} - 150(-9) + 6000$$

$$= -150(x - 3)^{2} + 7350$$

$$= 150(x - 3)^{2} + 7350$$

SHORTCUT to finding the vertex in a quadratic function in general form: $\left(-\frac{b}{2a}, f(-\frac{b}{2a})\right)$: Find the vertex of: $f(x) = -\frac{1}{2}x^2 + 6x + 1$ *Use this only as a check. If I ask you to complete the square, you must complete the square*

HW: Section 5.6 #1-6 (skip 5), 7, 9, 12, 13; Quiz next day 0n 5, 3, 5,4 & 5,6