Blk: \qquad Date: \qquad

Precalc Math 11

6.5 QE Word Problems (part 2)

1) At a local golf course, DJ whacked a golf ball which followed the path of a parabola given by the function $h(t)=-5 t^{2}+25 t+0.05$ where t is the number of seconds after he hit the ball and $h(t)$ is the height, in metres, of the ball above the ground after t seconds.
a) Write the equation in vertex form.

$$
\begin{align*}
& =-5 t^{2}+25 t+0,05 \\
& =-5\left(t^{2}-5 t\right)+0,05 \\
& =-5\left(t^{2}-5 t+\frac{25}{4}-\frac{25}{4}\right)+0.05 \\
& =-5\left(t-\frac{5}{2}\right)^{2}+\frac{313}{10} \\
& =-5(t-2.5)^{2}+31.3 \tag{1}
\end{align*}
$$

b) What's the height of the ball 2 seconds after it is hit? $\quad h=$? when $t=2$

$$
\begin{aligned}
h(t) & =-5 t^{2}+25 t+0.05 \\
h(2) & =-5(2)^{2}+25(2)+0.05 \\
& =30.05 \mathrm{~m}
\end{aligned}
$$

c) Find the maximum height reached by the golf ball.
max height 31.3 m । (from vertex)
d) How many seconds did it take for the ball to reach its max height?

$$
2,5 \mathrm{~s}
$$

(from vertex)
e) How high, in cm , did DJ tee up his golf ball before he hit it? $h=$? when $t=0$

$$
\begin{aligned}
& h(t)=-5 t^{2}+25 t+0.05 \\
& h(0)=-5(0)^{2}+25(0)+0.05=0.05 \mathrm{~m}
\end{aligned}
$$

f) How long, to the nearest tenth of a second, did it take for the golf ball to hit the ground?
if $h=0$ then $t=$?

$$
\begin{aligned}
& 0=-5 t^{2}+25 t+0,05 \\
& \frac{-25 \pm \sqrt{25^{2}-4(-5) 0.05}}{2(-5)}=\frac{-25 \pm \sqrt{626}}{-10} \\
& =\frac{-25 \pm 25.01999201 \rightarrow-0.001999}{-10} \rightarrow 5.0 \mathrm{~s} \text { reject }
\end{aligned}
$$

2) The perimeter of a rectangle is 84 m . Its area is $320 \mathrm{~m}^{2}$. What is the length and width of this rectangle?

$$
\begin{aligned}
& 10 \mathrm{~m} \& 32 \mathrm{~m} \\
& \begin{aligned}
&=-42 \pm 22 \rightarrow 10 \\
&-2
\end{aligned} 32 \\
& \begin{array}{l}
\text { reject } \rightarrow \\
b / \mathrm{t} \text { technically }
\end{array} \\
& 2
\end{aligned}
$$

3) Sanjit threw his iphone 4 vertically upwar at a speed of $22 \mathrm{~m} / \mathrm{s}$. Its height, h, is given by the function $h(t)=22 t-5 t^{2}$. When is the stone 15 m up and explain why there are 2 answers.

$$
\begin{aligned}
15 & =22 t-5 t^{2} \\
0 & =-5 t^{2}+22 t-15 \\
t & =\frac{-22 \pm \sqrt{22^{2}-4(-5)(-15)}}{2(-5)}=\frac{-22 \pm \sqrt{184}}{-10} \text { goes up phone } \\
& =\frac{-22 \pm 13.56}{-10} \rightarrow \begin{array}{l}
3.565 \\
0.845
\end{array}
\end{aligned}
$$

2
4) Benny jumped off a diving board. His height $h(t)$ in metres, above the water, is given by
$h(t)=-5 t^{2}+8 t+4$ where t is the number of seconds after he jumped. How long does it take for him to splash clumsily into the water? $h=0 \quad t=$?

$$
\begin{aligned}
& 0=-5 t^{2}+8 t+4 \\
& t=\frac{-8 \pm \sqrt{8^{2}-4(-5)^{4}}}{2(-5)}=\frac{-8 \pm 12}{-10}-25
\end{aligned}
$$

5) One positive integer is 3 greater than 4 times another positive integer. If the product of these two integers is 76 , what is the sum of these two integers?
Let $1^{51} \#: x$
Let 2n茾:4x+3 :

$$
\begin{gathered}
x(4 x+3)=76 \\
4 x^{2}+3 x-76=0 \\
x=\frac{-3 \pm \sqrt{3^{2}-4(4)(-76)}}{2(4)}=\frac{-3 \pm 35}{8}>-4.75 \\
x=4 \\
4 x+3=4(4)+3)=19 \text { so } 19+4=23
\end{gathered}
$$

6) A photo of dimensions 2 cm by 3 cm has its length and width increased by the same amount. The new dimensions now create an area 26 times greater than the original. What is the new length and width?

$x+3$

$$
\begin{aligned}
6(26) & =(x+2)(x+3) \\
156 & =x^{2}+5 x+6 \\
0 & =x^{2}+5 x-150
\end{aligned}
$$

$$
=(x-10)(x+15)
$$

$$
x=10 \text { or }-115
$$

reject

